Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spectral sensitivity of hot carrier solar cells

Identifieur interne : 000043 ( Main/Repository ); précédent : 000042; suivant : 000044

Spectral sensitivity of hot carrier solar cells

Auteurs : RBID : Pascal:14-0027515

Descripteurs français

English descriptors

Abstract

In this paper we present detailed balance simulations which determine the material parameters required to produce hot carrier solar cell (HCSC) annual energy yields comparable with that of multi-junction (MJ) systems. We demonstrate that HCSCs are less spectrally sensitive than equivalent MJ devices providing significant motivation for pursuing their development. Spectral variation in a given location over the course of the day and throughout the year means that the HCSC provides more consistent power production. The HCSC can also be developed for a standard reference spectrum and still perform optimally in a variety of locations with different atmospheric conditions, unlike the location sensitive performance of MJ devices. We show that an ideal hot carrier solar cell with bandgap 0.69 eV under 2000 x concentration would require a thermalization coefficient <0.1 W K-1 cm-2 to produce more power over the course of the year than an InGaP/GaAs/Ge triple junction device located at Solar Village in Saudi Arabia. The lowest experimentally demonstrated thermalization coefficient is 9.5 W K-1 cm-2 indicating that further materials development is required to achieve this target.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0027515

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Spectral sensitivity of hot carrier solar cells</title>
<author>
<name sortKey="Hirst, L C" uniqKey="Hirst L">L. C. Hirst</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>U. S. Naval Research Laboratory. 4555 Overlook Ave. SW</s1>
<s2>Washington DC 20375</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>U. S. Naval Research Laboratory. 4555 Overlook Ave. SW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lumb, M P" uniqKey="Lumb M">M. P. Lumb</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>The George Washington University, 2121 I Street NW</s1>
<s2>Washington DC 20037</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Washington DC 20037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hoheisel, R" uniqKey="Hoheisel R">R. Hoheisel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>The George Washington University, 2121 I Street NW</s1>
<s2>Washington DC 20037</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Washington DC 20037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bailey, C G" uniqKey="Bailey C">C. G. Bailey</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>U. S. Naval Research Laboratory. 4555 Overlook Ave. SW</s1>
<s2>Washington DC 20375</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>U. S. Naval Research Laboratory. 4555 Overlook Ave. SW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Philipps, S P" uniqKey="Philipps S">S. P. Philipps</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr, 2</s1>
<s2>79110 Freiburg</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bett, A W" uniqKey="Bett A">A. W. Bett</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr, 2</s1>
<s2>79110 Freiburg</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walters, R J" uniqKey="Walters R">R. J. Walters</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>U. S. Naval Research Laboratory. 4555 Overlook Ave. SW</s1>
<s2>Washington DC 20375</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>U. S. Naval Research Laboratory. 4555 Overlook Ave. SW</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0027515</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0027515 INIST</idno>
<idno type="RBID">Pascal:14-0027515</idno>
<idno type="wicri:Area/Main/Corpus">000247</idno>
<idno type="wicri:Area/Main/Repository">000043</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atmospheric condition</term>
<term>Electric power production</term>
<term>Energetic efficiency</term>
<term>Gallium phosphide</term>
<term>Germanium</term>
<term>Hot carrier</term>
<term>Indium phosphide</term>
<term>Performance evaluation</term>
<term>Power production</term>
<term>Saudi Arabia</term>
<term>Solar cell</term>
<term>Solar spectrum</term>
<term>Spectral sensitivity</term>
<term>Standards</term>
<term>System simulation</term>
<term>Ternary compound</term>
<term>Village</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Sensibilité spectrale</term>
<term>Porteur chaud</term>
<term>Cellule solaire</term>
<term>Simulation système</term>
<term>Rendement énergétique</term>
<term>Production énergie</term>
<term>Production énergie électrique</term>
<term>Norme</term>
<term>Condition météorologique</term>
<term>Evaluation performance</term>
<term>Village</term>
<term>Arabie saoudite</term>
<term>Spectre solaire</term>
<term>Phosphure de gallium</term>
<term>Phosphure d'indium</term>
<term>Composé ternaire</term>
<term>Germanium</term>
<term>InGaP</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Arabie saoudite</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Rendement énergétique</term>
<term>Norme</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper we present detailed balance simulations which determine the material parameters required to produce hot carrier solar cell (HCSC) annual energy yields comparable with that of multi-junction (MJ) systems. We demonstrate that HCSCs are less spectrally sensitive than equivalent MJ devices providing significant motivation for pursuing their development. Spectral variation in a given location over the course of the day and throughout the year means that the HCSC provides more consistent power production. The HCSC can also be developed for a standard reference spectrum and still perform optimally in a variety of locations with different atmospheric conditions, unlike the location sensitive performance of MJ devices. We show that an ideal hot carrier solar cell with bandgap 0.69 eV under 2000 x concentration would require a thermalization coefficient <0.1 W K
<sup>-1</sup>
cm
<sup>-2</sup>
to produce more power over the course of the year than an InGaP/GaAs/Ge triple junction device located at Solar Village in Saudi Arabia. The lowest experimentally demonstrated thermalization coefficient is 9.5 W K
<sup>-1 </sup>
cm
<sup>-2</sup>
indicating that further materials development is required to achieve this target.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>120</s2>
</fA05>
<fA06>
<s3>p. b</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Spectral sensitivity of hot carrier solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HIRST (L. C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LUMB (M. P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HOHEISEL (R.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BAILEY (C. G.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PHILIPPS (S. P.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BETT (A. W.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>WALTERS (R. J.)</s1>
</fA11>
<fA14 i1="01">
<s1>U. S. Naval Research Laboratory. 4555 Overlook Ave. SW</s1>
<s2>Washington DC 20375</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>The George Washington University, 2121 I Street NW</s1>
<s2>Washington DC 20037</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr, 2</s1>
<s2>79110 Freiburg</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>610-615</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000508232450230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0027515</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper we present detailed balance simulations which determine the material parameters required to produce hot carrier solar cell (HCSC) annual energy yields comparable with that of multi-junction (MJ) systems. We demonstrate that HCSCs are less spectrally sensitive than equivalent MJ devices providing significant motivation for pursuing their development. Spectral variation in a given location over the course of the day and throughout the year means that the HCSC provides more consistent power production. The HCSC can also be developed for a standard reference spectrum and still perform optimally in a variety of locations with different atmospheric conditions, unlike the location sensitive performance of MJ devices. We show that an ideal hot carrier solar cell with bandgap 0.69 eV under 2000 x concentration would require a thermalization coefficient <0.1 W K
<sup>-1</sup>
cm
<sup>-2</sup>
to produce more power over the course of the year than an InGaP/GaAs/Ge triple junction device located at Solar Village in Saudi Arabia. The lowest experimentally demonstrated thermalization coefficient is 9.5 W K
<sup>-1 </sup>
cm
<sup>-2</sup>
indicating that further materials development is required to achieve this target.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D05I02E</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Sensibilité spectrale</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Spectral sensitivity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Sensibilidad espectral</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Porteur chaud</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Hot carrier</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Portador caliente</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Simulation système</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>System simulation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Simulación sistema</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Rendement énergétique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Energetic efficiency</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Rendimiento energético</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Production énergie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Power production</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Producción energía</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Production énergie électrique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Electric power production</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Producción energía eléctrica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Norme</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Standards</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Norma</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Condition météorologique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Atmospheric condition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Condición meteorológica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Village</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Village</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Pueblo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Arabie saoudite</s0>
<s2>NG</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Saudi Arabia</s0>
<s2>NG</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Arabia saudita</s0>
<s2>NG</s2>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Spectre solaire</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Solar spectrum</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Espectro solar</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Phosphure de gallium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Gallium phosphide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Galio fosfuro</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Germanio</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>InGaP</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Asie</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>027</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000043 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000043 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0027515
   |texte=   Spectral sensitivity of hot carrier solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024